اتم و ساختار ان
ارسطو در قرن چهارم قبل از میلاد مسیح نظریه اتمی را نپذیرفت. او باور داشت که بطور فرضی ماده بی‌پایان به ذرات کوچک و کوچکتر تقسیم می‌شود. این نظریه دو هزار سال بصورت اندیشه محض باقی ماند. رابرت بویل در سال 1661 و ایزاک نیوتون در سال 1687 وجود اتمها را پذیرفتند.

نظریه اتمی دالتون

جان دالتون نظریه اتمی را بگونه‌ای طرح کرد که شاخص برجسته‌ای در تاریخ شیمی شد. این نظریه در سالهای 1803 تا 1808 مطرح شد. در آن زمان دانشمندان بسیاری معتقد بودند که ماده از اتم‌ها ترکیب یافته است اما دالتون از این هم پیش رفت. او طرحی برای نظریه اتمی بوجود آورد که می‌توانست قوانین تغییر شیمیایی را توضیح دهد و با نسبت دادن جرمهای نسبی به اتمهای عناصر گوناگون به مفهوم نظریه اتمی صورت کمی داد.

اصول موضوع نظریه دالتون

  1. عناصر از ذرات بی‌نهایت کوچکی که اتم نامیده می‌شوند ترکیب یافته‌اند. تمام اتمهای یک عنصر یکسان و اتمهای عناصر گوناگون متفاوت‌اند.

  2. در واکنشهای شیمیایی اتمها از هم جدا می‌شوند و به هم می‌پیوندند. در این واکنش هیچ اتمی ایجاد نمی‌شود یا از میان نمی‌رود و هیچ اتمی از یک عنصر به عنصر دیگر تبدیل نمی‌شود.

  3. یک ماده مرکب شیمیایی حاصل ترکیب اتمهای دو یا چند عنصر است. یک ماده مرکب معین از اتمهایی ترکیب یافته است که همواره نوع و نسبت آنها ثابت است.

تغییرات در نظریه اتمی دالتون

نظریه دالتون به مفهوم کلی آن امروزه نیز معتبر است. لیکن اصل اول آن تغییر یافته است. دالتون می‌گفت که تمام اتمهای یک عنصر معین ، جرم اتمی یکسان دارند. امروزه ما می‌دانیم که تمام اتمهای یک عنصر از لحاظ شیمیایی به هم شبیه و اتمهای یک عنصر با اتمهای عنصر دیگر تفاوت دارند. علاوه بر این ما می‌توانیم یک جرم متوسط برای اتمهای هر عنصر در نظر بگیریم. در بسیاری از محاسبات اگر عنصر را از یک نوع اتم با جرم متوسط بدانیم اشتباهی بوجود نمی‌آید.

منشا نظریه اتمی دالتون

دالتون وجوه کمی نظریه خود را از درون دو قانون مربوط به تغییرات شیمیایی بیرون کشید:

  •  قانون پایستاری جرم می‌گوید که در جریان یک واکنش شیمیایی جرم تغییر محسوسی نمی‌کند. اصل دوم نظریه دالتون این قانون را توضیح می‌دهد.

  • قانون نسبتهای معین می‌گوید که یک ماده مرکب خالص همواره شامل عناصر معینی است که با نسبت جرمی معین ترکیب می‌شوند. اصل سوم نظریه دالتون این قانون را توضیح می‌دهد.

الکترون

در نظریه دالتون و نظریه‌های یونانیان اتمها کوچکترین اجزای ممکن ماده بودند اما در اواخر سده نوزدهم کم کم معلوم شد که اتم خود از ذراتی کوچکتر ترکیب یافته است. این تغییر دیدگاه نتیجه آزمایشهایی بود که با الکتریسیته بعمل آمد. در سال 1807 و 1808 شیمیدان انگلیسی همفری دیوی با تجزیه مواد مرکب توسط الکتریسیته پنج عنصر پتاسیم ، سدیم ، کلسیم ، استرونسیم و باریم را کشف کرد.

 دیوی با این کار به این نتیجه رسید که عناصر با جاذبه‌هایی که ماهیتا الکتریکی هستند به هم متصل می‌شوند.


در سال 1832 و 1833 مایکل فارادی مجموعه آزمایشهای مهمی در زمینه برقکافت شیمیایی انجام داد. در فرایند برقکافت مواد مرکب بوسیله الکتریسیته تجزیه می‌شوند. فارادی رابطه بین مقدار الکتریسیته مصرف شده و مقدار ماده مرکب تجزیه شده را بر
رسی کرد و فرمول قوانین برقکافت شیمیایی را بدست آورد. بر مبنای کار فارادی جرج جانسون استونی در سال 1874 به طرح این مطلب پرداخت که واحدهای باردار الکتریکی با اتم‌ها پیوستگی دارند. او در سال 1891 این واحدهای الکتریکی را الکترون نامید.

الکترونها در میدان مغناطیسی و الکتریکی منحرف می‌شوند. بعدها مقدار بار الکترون در سال 1909توسط رابرت . ا . میلیکان محاسبه شد. الکترون یک واحد بار منفی یعنی دارد. جرم الکترون نیز از رابطه q به q/m محاسبه شد و مقدار بدست آمد.

پروتون

هرگاه یک یا چند الکترون از یک اتم یا مولکول خنثی جدا شوند باقیمانده ، بار مثبتی برابر با مجموع بارهای منفی الکترونهای جدا شده دارد. اگر یک الکترون از یک اتم نئون ( نماد ، Ne ) جدا شود نتیجه یک یون و اگر دو الکترون جدا شود یک یون  بدست می‌آید و الی آخر. این نوع ذرات مثبت ( یونهای مثبت ) وقتی در لوله تخلیه الکتریکی تولید می‌شوند که پرتوهای کاتدی از اتمها یا مولکولهای موجود در لوله الکترون جدا کنند.

این یونهای مثبت به طرف الکترود منفی حرکت می‌کنند اما الکترونهای پرتوهای کاتدی چون بار منفی دارند در جهت مخالف (بطرف الکترود مثبت) حرکت می‌کنند. این جریان یونهای مثبت که پرتوهای مثبت نامیده می‌شوند، نخستین بار توسط یوجین گلدشتاین در سال1886 مشاهده شدند. این ذرات مثبت پروتون نامیده می‌شوند و جز تشکیل دهنده تمام اتمها هستند. پروتون یک واحد بار مثبت دارد و علامت آن مثبت است.

جرم پروتون نیز از رابطه q بر q/m محاسبه شد.       

نوترون  

چون اتمها از نظر الکتریکی خنثی هستند تعداد الکترونها و پروتونها در هر اتم باید برابر باشد. برای توجیه جرم کل اتمها ارنست رادرفورد در سال 1920 وجود ذراتی بدون بار را در هسته اتم مسلم دانست. چون این ذرات بدون بارند تشخیص و تعیین خواص آنها مشکل است ولی در سال 1932 جیمز چادویک نتیجه کارهای خود را درباره اثبات وجود این ذرات که نوترون نامیده می‌شوند منتشر کرد. او توانست با استفاده از داده‌های بدست آمده از بعضی واکنشهای هسته‌ای مولود نوترون جرم آن را محاسبه کند. چادویک با در نظر گرفتن جرم و انرژی تمام ذراتی که در این واکنشها مصرف و تولید می‌شوند جرم نوترون را که اندکی از جرم پروتون بیشتر است محاسبه کرد. جرم نوترون     و جرم پروتون   است.

 

هسته اتم

پرتوزایی طبیعی

بعضی از اتم‌ها مجموعه ناپایداری از ذرات بنیادی هستند. این اتم‌ها خود بخود پرتوهایی گسیل می‌دارند و به اتمهای دیگر با هویت شیمیایی متفاوت تبدیل می‌شوند. این فرایند که پرتوزایی نامیده می‌شود که در سال 1896 بوسیله هانری بکرل کشف شد. در سالهای بعد ارنست رادرفورد ماهیت سه نوع پرتو گسیل یافته از مواد پرتوزای موجود در طبیعت را توضیح داد. این سه نوع پرتو با سه حرف نخستین الفبای یونانی آلفا (α) ، بتا (β) و گاما (γ) مشخص می‌شوند

  • تابش آلفا مرکب از ذراتی است که بار +2 و جرمی تقریبا برابر پروتون دارند. این ذرات آلفا با سرعتی حدود km/s 16000 از ماده پرتوزا بیرون می‌جهند. نخستین بار که ذرات α مورد مطالعه قرار گرفتند نوترون هنوز کشف نشده بود. امروزه ما می‌دانیم که ذره آلفا مرکب از دو پروتون و دو نوترون است.

  • تابش بتا مرکب از جریانی از الکترونهاست که تقریبا با سرعت km/s 130000 سیر می‌کنند.

  • تابش گاما اصولا صورتی از نور با انرژی بسیار زیاد است. پرتوهای گاما بدون بار و شبیه پرتوهای ایکس‌اند.

+ نوشته شده در  پنجشنبه بیست و ششم آذر 1388ساعت 8:56  توسط پریوش  | 

If you know

who you are and

what you want and

why you want it

and if you have

confidence in yourself and

a strong will to obtain your desires and

a very positive attitude

you can make

your life

yours

If yoy ask

گر بدانی

کیستی،

خواسته ات چیست،

و چرا اینگونه می خواهی،

گر خود را باور داشته باشی

با عزمی راسخ

و نگرشی مثبت

دنیایی خواهی ساخت

از آن خود،

اگر تنها اراده کنی.

Susan Polis Schuts  سوزان  پولیس شوتز))

 

+ نوشته شده در  پنجشنبه بیست و ششم آذر 1388ساعت 8:48  توسط پریوش  | 

عناصر گروه VIIA یعنی فلوئور ، بروم ، ید و استاتین ، هالوژن نامیده می‌شوند.

ریشه لغوی

نام هالوژنها از یونانی گرفته شده و به معنی نمک‌ساز است.

اطلاعات کلی

این عناصر به استثنای آستاتین ، به‌صورت هالید نمکها بطور فراوان در طبیعت وجود دارند. آستاتین احتمالا در طبیعت ، به مقادیر فوق‌العاده کم به‌صورت ماده حد واسطی با طول عمر کوتاه یافت می‌شود که از فرایندهای تجزیه مواد رادیواکتیو طبیعی حاصل می‌گردد. اما بیشتر اطلاعات ناقص ما درباره شیمی آستاتین ، حاصل مطالعه مقادیر جزئی ایزوتوپ رادیواکتیو این عنصر است که از طریق واکنشهای هسته‌ای تهیه می‌شود.

خواص گروهی

هر اتم هالوژن از گاز نجیبی که پس از آن ، در جدول تناوبی عناصر قرار گرفته است، یک الکترون کمتر دارد. هر اتم هالوژن ، تمایل زیادی دارد که با تشکیل یک یون با یک بار منفی یا یک پیوند کووالانسی ، آرایش الکترونی یک گاز نجیب را به خود بگیرد. هر یک از عناصر این گروه به استثنای فلوئور ، حالت اکسایش مثبت دارد. نماد X ، مشخص کننده هر هالوژنی در ترکیب است.

در سری هالوژنهایی که بر حسب عدد اتمی در این جدول مرتب شده‌اند، اغلب خواص به‌طور منظم افزایش یا کاهش می‌یابند. اتم هالوژن در هر تناوب دوره بعد از گاز نجیب آن دوره دارای بالاترین پتانسیل یونش است و پتانسیل یونش در هر گروه با افزایش شعاع اتمی کاهش می‌یابد.


تصویر
ساختمان اتمی کلر

پیوندهای بین اتمها و مولکولها

هالوژنها در شرایط معمولی به‌صورت مولکولهای دو اتمی‌اند و اتمهای این مولکولها بوسیله یک پیوند کووالانسی ساده به یکدیگر متصل می‌شوند. این مولکولها در حالت جامد و مایع بوسیله نیروهای لاندن به یکدیگر می‌پیوندند. بین مولکول هالوژنها ، I2 بزرگترین آنها بوده ، بیشترین تعداد الکترونها را دارد و قطبش پذیرترین آنهاست. به همین علت ، I2 در مقایسه با سایر هالوژنها ، دارای قویترین نیروهای جاذبه بین مولکولی ، بالاترین نقطه ذوب و جوش است. در دما و فشار معمولی I2 جامد ، Br2 مایع ، Cl2 و F2 گاز است.

فعالیت

هر یک از هالوژنها ، فعالترین غیر فلز در دوره خود در جدول و فلوئور ، فعالترین غیر فلزات است. الکترونگاتیوی فلوئور ، بالاتر از هر عنصر دیگر است. این عنصر قویترین اکسنده است که تاکنون شناخته شده است. الکترونگاتیوی هالوژنها به‌ترتیب F>Cl>Br>I کاهش می‌یابد و کاهش قدرت اکسندگی آنها نیز به همین ترتیب است. مقادیر الکترونخواهی و انرژی پیوند از F2 تا I2 بطور منظم تغییر نمی‌کنند.




تصویر
برم

با توجه به روال تغییرات الکترونگاتیوی و.پتانسیلهای الکترود ، انتظار می‌رود که بزرگترین مقادیر یاده شده ، مربوط به فلوئور باشد. علت پایین بودن نسبی الکترونخواهی فلوئور و پایین بودن نسبی انرژی پیوند F-F هنوز کاملا معلوم نشده است. تصور می‌رود که این اثرها ، ناشی از دافعه ابر الکترونی کوچک و بسیار متراکم اتم فلوئور باشد. به خاطر داشته باشید که پتانسیلهای الکترود ، مربوط به فرآیندهایی است که در محلولهای آبی انجام می‌شوند.

براین اساس ، توانایی اکسندگی زیاد فلوئور در مقایسه با سایر هالوژنها (علیرغم الکترونخواهی نسبتا کم فلوئور) را می‌توان با توجه به اینکه تبدیل هالوژنهای آزاد به یونهای هالید در محلولهای آبی ، طی چند مرحله صورت می‌گیرد، بیان نمود.
+ نوشته شده در  پنجشنبه بیست و ششم آذر 1388ساعت 8:18  توسط پریوش  | 

یک اتم ، کوچکترین جزء اصلی غیر قابل تقلیل یک سیستم شیمیایی می‌باشد.


img/daneshnameh_up/a/a0/saniatom.gif

ریشه لغوی

این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد.

تاریخچه شناسایی اتم

مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.


راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:

Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium

چاپ نمود.

img/daneshnameh_up/0/07/Layehaye_electroni.jpg

براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم

اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم

در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها

اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.

اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

ساده‌ترین اتم

ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم‌ها

واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

img/daneshnameh_up/2/2b/atom3.gif

پیوند میان اتم‌ها

اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

یون

هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

پیوند یونی

کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است.

مرز مابین انواع پیوندها

همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد.

بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد.
+ نوشته شده در  چهارشنبه بیست و پنجم آذر 1388ساعت 10:13  توسط پریوش  | 

 

مدل اتمی رادرفورد
 

 

دو سه سال بعد رادرفورد با انجام آزمایشی ، مدل اتمی تامسون را رد کرد . او در آزمایش خود ، پرتو آلفا را ، که دارای بار الکتریکی منفی است ، به ورقه نازک طلا گسیل داد ، بر اثر این برخورد ، بخش عظیمی از پرتو از ورقه عبور کرد ، اما قسمت ناچیزی از آن ، بر اثر بر خورد، منعکس و یا منحرف شد .

وی با تکیه بر این استنتاج ، مدل اتمی خود را در صحنه رقابت مطرح ساخت . بخش عظیمی از فضا اتم خالی است و به همین دلیل بخش عظیمی از پرتو آلفا بدون انحراف از اتم عبور می کند ، اما قسمت ناچیزی از اتم توپر و متراکم است که دارای بار الکتریکی مثبت است و هنگامی که پرتو آلفا به آن برخورد می کند منعکس می شود و یا هنگامی که از نزدیکی آن عبور می کند منحرف می شود .


در اطراف این منطقه توپر "هسته اتم" الکترون ها پراکنده شده اند . و علت آنکه چرا هنگامی که پرتو آلفا از فضای اطراف هسته عبور می کند و از کنار الکترون ها بدون هیچ انحرافی به مسیر خود ادامه می دهد آن است که در یک اتم اندازه بارالکتریکی مثبت هسته با مجموع اندازه بار الکتریکی منفی الکترون های اطراف آن برابر است . پس مطابق مدل اتمی رادرفورد ، اتم از هسته که دارای بار الکتریکی مثبت است و در مرکز اتم قرار دارد و همچنین الکترون که در اطراف هسته قرار دارد، تشکیل شده است . با پذیرفتن مدل اتمی رادرفورد این سوال برای دانشمندان پیش آمد که طیف نشری خطی اتم عناصر ، حاصل از چیست ؟


معمای جدید در طراحی مدل اتمی ، باعث شد که دانشمندان دست به تحقیقات و آزمایش های گسترده بزنند .

مدل بور 

با پذیرفتن مدل اتمی رادرفورد این سوال برای دانشمندان پیش آمد ، که طیف نشری خطی اتم عناصر ، حاصل از چیست ؟

در این هنگام نیلس بور با پذیرفتن مدل اتمی رادرفورد چنین پیشنهاد داد که الکترون ها در اطراف هسته اتم در سطوح انرژی مشخصی قرار دارند و در این سطوح به دور هسته اتم در حال چرخیدن هستند . انرژی الکترون هایی که در سطوح انرژی پایین تر به هسته نزدیک تر هستند ، نسبت به الکترون هایی که از هسته دورند ، انرژی کمتری دارند . پس برای انتقال الکترون از سطح انرژی پایین به سطح انرژی بالا ، باید انرژی معادل اختلاف انرژی بین آن دو سطح ، را به آن الکترون بدهیم . پس انرژی الکترون ها در یک اتم کوانتیده است .

مدل اتمی بور توانست به ما نشان دهد که طیف نشر خطی که از اتم عناصر گسیل می شود ، بر اثر انتقال الکترون ها از سطوح انرژی بالا به سطوح انرژی پایین است ، که در این انتقال انرژی الکترون کاهش و به صورت نور و گرما آزاد می شود. که اگر این نور آزاد شده را از منشور عبور دهیم طیف نشری آن مشخص می شود .

 بور ، بیشتر مدل اتمی خود را بر اساس آزمایش هایی که با اتم های هیدروژن و هیلیم انجام داده بود مطرح می ساخت به همین دلیل مدل اتمی او ( که به مدل منظومه شمسی معروف است ) برای اتم های سنگینی مانند اورانیم ، آهن و ... صدق نمی کرد. در این هنگام مدل اتمی کوانتمی (یا ابر الکترونی ) به همکاری بسیاری از دانشمندان به در عرصه رقابت مطرح شد . از جمله دانشمندانی که در این مدل اتمی سهم چشمگیری داشتند ، هایزنبگ ، پلانک و شرودینگر را می توان نام برد .

البته انیشتین با ارائه فرمول های خود نیز توانست به این مدل اتمی کمک کند.

 

+ نوشته شده در  چهارشنبه بیست و پنجم آذر 1388ساعت 10:9  توسط پریوش  | 

 هزار و پانصد سال پيش، حدود 450 قبل از ميلاد يك دانش پژوه يا حكيم يوناني درباره تبديل اجسام قطعات كوچكتر به تفكر پرداخت. نام او «لوسيوپس» بود. از نظر او اينكه هر چيز را مرتبا به قطعات كوچكتر و كوچكتر تقسيم مي‏توان كرد، مفهومي نداشت و اين عمل مي‏بايست در جايي به انتها مي‏رسيد و زماني به قطعه‏ي چنان كوچكي رسيد كه نتوان كوچكتر از آن را به دست آورد....

 لوسيوپس شاگردي به نام «دموكرتيوس داشت كه او هم همينطور فكر مي‏كرد. وقتي دموكريتوس در سال 380 قبل از ميلاد درگذشت، 72 كتاب درباره‏ي فرضيات خود راجع به كائنات نوشته بود. يكي از آن فرضيات اين بود كه همه چيز در جهان از ذرات بسيار كوچكي ساخته شده و اين ذرات كوچكتر از آنند كه بتوان بازهم به ذرات كوچكتر تقسيم شان كرد. او اين ذرات كوچك را «آتوموس» ناميد كه يك لغت يوناني است و معناي «خرد نشدني» مي‏دهد. اين لغت در انگليسي به صورت «اتم» درآمد.

 دموكريتوس، معتقد بود كه همه‏ي جهان از انواع مختلف اتم ساخته شده است و در ميان اتم‏ها هيچ چيز وجود ندارد. اتم‏هاي مجزا كوچكتر از آن هستند كه به چشم ديده شوند ولي زماني كه تعداد زيادي از آنها در تركيبات مختلف به يكديگر ملحق شوند تشكيل اجسام گوناگوني را مي‏دهند كه ما در اطراف خود مشاهده مي‏كنيم. وي عقيده داشت كه گرچه اتمها مي‏توانند آرايش خود را تغيير دهند، لكن نه مي‏توان آنها را ساخت و نه از بين برد.

 دموكريتوس نمي‏توانست عقايد خود را ثابت كند و حكماي يونان هم معتقد به وجود اتم نبودند و سخنان او برايشان مفهوم عقلي نداشت بنابراين نظريه‏ي «اتميسم» وي معروفيتي نيافت. از كتاب‏هاي دموكريتوس نسخ زيادي تهيه نشد و همان نسخه‏ها نيز بتدريج از بين رفت و فقط بعلت آنكه در ديگر كتب قديمي به فرضيه‏ي اتمي دموكريتوس اشاره شده نامي از وي به ميان آمده ما امروز از فرضيات او آگاه هستيم.

 حكيم يوناني ديگري به نام «اپيكور» كتابهاي دموكريتوس را قبل از نابودي مطالعه كرد و نظريه‏ي اتمي وي را دنبال كرد. در سال 306 قبل از ميلاد در آتن، مدرسه‏اي بنا كرد. او معتقد بود همه چيز از اتم ساخته شده و حداقل 300 كتاب در موضوعات مختلف نوشت. وي شاگردان زيادي (از جمله زنان) تربيت كرد ولي به مرور زمان او و آثارش به فراموشي سپرده شدند. اما فرض وجود اتم از بين نرفت.

 دو قرن پس از اپيكور، در زمانيكه آثارش هنوز موجود بود، يك عالم رومي به نام «كولرتيوس» نظريه‏ي اتمي را دنبال كرد. وي در حدود 56 سال قبل از ميلاد شعر طويلي به زبان انگليسي «درباره‏ي ماهيت اجسام» مي‏باشد. در اين شعر او به طور مشروح و استادانه به بيان و توضيح نظرات دموكريتوس و اپيكور پرداخت.

 اما از لوكريتوس هم نسخ زيادي تهيه نشد. همزمان با اضمحلال تمدن يونان و روم، نسخه‏هاي قديمي هم نابود مي‏شدند. با آغاز قرون وسطي در اروپا نوشته‏هاي دموكريتوس، اپيكور و لوكريتوس همگي از ميان رفته و مردم اتم را به فراموشي سپردند.

 تا اينكه در سال 1417، زماني كه اروپائيان به نسخ قديمي علاقمند شده بودند شخصي موفق به كشف يك نسخه‏ي قديمي آسيب ديده از شعر لوكريتوس شد. در سال 1454 ياهان گوتنبرگ دستگاه چاپ را اختراع كرد و كتاب‏ها را از خطر نابودي نجات داد.

 شعر لوكريتوس منتشر شده و خيلي از و خيلي از دانش پژوهان تحت تاثير نظريه‏ي اتمي قرار گرفتند. «پير گاسندي» كه در نيمه‏ي اول دهه سالهاي 1600 كتب موثر و متعددي نوشته) است نظريه‏ي اتمي پذيرفت و بسياري از دانش پژوهان اروپايي را از نظرات خود درباره‏ي اتم مطلع ساخت. اتميسم به دوران جديد راه يافت. اما صرف ايده و تصور بودن اتم، ايده‏اي كه فقط به نظر بعضي افراد منطقي مي‏رسيد، سبب مي‏شد تا جدي تلقي نشود.

 يك شيمي دان انگليسي به نام «رابرت بويلي» از جمله كساني بود كه از نظرات گاندي مطلع بود. او اولين دانشمندي بود كه به آزمايشاتي دست زد كه نشان دهنده احتمال وجود اتم بود. موضوع مورد علاقه‏ي بويلي هوا بود. هوا جامد نبود كه موقع لمس كردن سخت باشد و فرم خود را حفظ كند و مايع هم نبود، كه جريان داشته و قابل رويت باشد. هوا ماده‏اي است كه به طور رقيق پراكنده مي‏شود و به چنين ماده‏اي «گاز» مي‏گويند.

 در سال 1662، بويلي كمي جيوه در يك لوله‏ي شيشه‏اي بلند به طول 5 متر و به شكل حرف J ريخت. قسمت كوتاهتر تحتاني لوله بسته بود در حالي كه سر لوله بلندتر باز بود. جيوه بخش تحتاني لوله را پر كرد و هوا در قسمت بسته و كوتاه لوله محبوس شد. سپس بويلي جيوه‏ي بيشتري در لوله ريخت. فشار وزن جيوه اضافي مقداري از جيوه را در داخل قسمت كوتاه لوله به بالا راند. هم چنان كه جيوه به بالاي قسمت كوتاه فشار مي‏آورد، هواي محبوس در فضاي كوچكتر متراكم مي‏شد و اين هواي فشرده بود. هر چه بويلي جيوه بيشتري مي‏ريخت، هواي محبوس در فضاي كوچكتر و بازهم كوچكتر متراكم مي‏شد. بويلي با اين آزمايش نشان داد كه چگونه فضاي پر شده از هوا با افزايش وزن جيوه كمتر مي‏شود. اين را «قانون بويلي» مي‏گويند.

  آزمايش بويلي‏

  هوا چگونه متراكم مي‏شود؟

 يك اسفنج را مي‏توان در فضاي كوچكتري متراكم كرد. اين به آن دليل است كه اسفنج داراي منافذ كوچكي است كه وقتي آن را فشار مي‏دهيد هواي درون آن منافذ بيرون و ذرات سخت و جامد اسفنج به هم نزديكتر مي‏شوند. وقتي هوا را فشرده مي‏كنيم، منافذ آن را بسته و ماده‏ي هوا را به هم نزديكتر مي‏كنيم.

 بويلي فكر كرد بايد اتم‏هاي بسياري ريزي در هوا باشد. بين اتم‏ها فضايي وجود دارد كه در آن هيچ چيزي نيست. وقتي هوا متراكم مي‏شد اتم‏ها ناچار به يكديگر نزديك مي‏شدند. به عقيده او اين در مورد گازها صادق بود.

 اگر آب مايع را بجوشانيد تبديل به بخار مي‏شود كه نوعي گاز است. بخار بيش از هزار برابر آب فضا را اشغال مي‏كند. آسانترين توضيح اين است كه فرض كنيم در آب اتم چنان به هم نزديكند كه يكديگر را لمس مي‏كنند حال آنكه در بخار و گاز آن‏ها از يكديگر دورند.

 بدين ترتيب در سال 1662، بواسطه بويلي، اتم براي اولين بار از مرحله يك ايده و تصور گام فراتر نهاد.

 

 شواهد وجود اتم‏

 آيا اتم انواع مختلف دارد؟ دموكريتوس معتقد بود كه اين امكان وجود دارد. يونانيان باستان عقيده داشتند جهان از چهار عنصر خاك، آب، هوا، آتش ساخته شده است. به نظر دموكريتوس هر يك از اين عناصر احتمالا نوع متفاوتي از اتم را دارا بودند.

 اتم‏هاي خاك ممكن است سخت و ناهموار باشند، اتم‏هاي آب احتمالا نرم و گرد هستند و اتم‏هاي آتش ممكن است نوك تيز و كنگره دار باشند و اتم‏هاي هوا بسيار سبك هستند.

 اما يونانيان باستان هيچگونه مدركي براي اثبات اينكه جهان واقعي از اين چهار عنصر ساخته شده نداشتند. بويلي در كتابي كه در 1661 نوشت، اظهار داشت كه عناصر بايد از طريق آزمايش كشف شوند.

 شيمي دان‏ها بايد سعي كنند هر چيز را به ساده‏ترين مواد ممكن تجزيه كنند، زمانيكه ديگر ماده قابل تجزيه نبود، آن يك عنصر است. پس از انتشار كتاب بويلي تا اواخر سالهاي دهه‏ي 1700، حدود 30 عنصر مختلف كشف شد.

 آيا هر عنصر داراي نوع مختلفي از اتم است؟ يعني نيكل، نقره، اكسيژن و سولفور هريك داراي اتم‏هاي نوع خود هستند؟ طي سالهاي دهه‏ي 1700، اگر بويلي و چندتن ديگر طرفداران فرضيه‏ي اتم بودند، ولي اكثر شيمي دان‏ها مطالعه در اجسام ريزي را كه ديده نمي‏شدند، عمل بي فايده‏اي مي‏دانستند.

 شيمي داني فرانسوي به نام «آنتوان لوران لاووازيه» در سال 1782 ثابت كرد كه وقتي ماده‏اي به ماده ديگر تغيير شكل مي‏دهد، تغييري در وزن كلي آن حاصل نمي‏شود و به طور كلي جرم فراورده‏ها برابر واكنشدهنده هاست. اين قانون «بقاي ماده» خوانده مي‏شود.

 كشف لاووازيه با فرضيه اتم جور در مي‏آيد. فرض كنيم گفته‏ي دموكريتوس كه اتم‏ها قابل ساختن يا از بين بردن نيستند درست باشد و تنها تغيير آرايش آنها ممكن باشد. چوب و هوا هريك داراي اتم‏هايي با آرايش يكسان هستند.

 وقتي چوب مي‏سوزد، اتم‏ها با تغيير آرايش به صورت خاكستر و دود در مي‏آيند. با اين حال تعداد اتم‏ها همان خواهد بود و وزن كلي آنها تغيير نخواهد كرد. اگر چنين باشد مي‏توان به جاي وزن كلي وزن هر عنصر را جداگانه حساب كنيم و ببينيم وقتي تغييرات روي مي‏دهد چه اتفاقي مي‏افتد.

 «ژوزف لوئي پروست» شيمي دان فرانسوي، اين مورد آزمايش كرد، در سال 1789 به علت انقلاب بي رحمانه در فرانسه به اسپانيا رفت (لاووازيه در فرانسه ماند و در 1794 سر از بدنش جدا شد). پروست طي آزمايش هايي تركيبات مختلفي از عنصرها را شناخت و به اين نتيجه رسيد كه براي هر تركيب با هر روشي عنصرها را بياميزد بايد همان نسبت‏ها را حفظ كند. وي به اين كار (تركيب عناصر) ادامه داد تا در سال 1799 قانون «نسبتهاي ثابت» خود را اعلام كرد. بردست خود را درگير مساله‏ي اتم نكرد ولي اتم در قانون وي بدين صورت جاي مي‏گيرد: فرض كنيد تمام عناصر از اتم تشكيل شده باشند و اتم قابل تجزيه به ذرات كوچكتر نباشد. وقتي عناصر به هم ملحق شده و تركيبي را به وجود مي‏آورند، اتم‏هاي بسياري از يك عنصر با اتم‏هاي بسياري از يكديگر تركيب مي‏شوند.

 «جان دالتون» دانشمند انگليسي با توجه به اين ارتباط ميان اتم‏ها و قانون نسبتهاي ثابت، پس از آزمايشهاي متعدي موفق به ارايه‏ي قانون نسبت‏هاي چند گانه، در 1803 شد.

 اين قانون بدين صورت است كه هرگاه چند گرم از عنصر A با گرم‏هاي متفاوتي از عنصر B واكنش دهد، تركيبات متفاوتي مي‏دهد كه بين گرم‏هاي عنصر B نسبت‏هاي ساده و كوچكي برقرار بود.

 وي در واقع همان نظريات لوسيوپس و دموكريتوس را كامل‏تر و با اثبات ارائه مي‏كرد و در سال 1808 نظريات خود را درباره اتم را در كتابي منتشر كرد و به خاطر اين كتاب است كه امتياز كشف و فرضيه‏ي اتمي به او داده مي‏شود.

 پس از نشر كتاب دالتون شيمي دان‏هاي بيشتري آماده قبول فرضيه وجود اتم شدند و به زودي تقريبا همه آن را پذيرفتند.

 

 وزن اتم‏ها

 يكي ديگر از مشكلاتي كه سر راه اثبات اتم بود وزن آن‏ها بود. دالتون در جستجوي آن بود كه بداند چه چيز باعث مي‏شود اتم‏هاي عناصر مختلف با يكديگر متفاوت باشند. در آزمايشات و تحقيقات افرادي مانند لاووازيه، پروست و خود دالتون، وزن مواد مختلف داخالت داشتند. شايد كشف وزن اتم‏هاي مختلف امكان‏پذير بود و شايد اين همان عاملي بود اتم‏ها را با يكديگر متفاوت مي‏ساخت.

 در سال 1811 فيزيكدان ايتاليايي به نام «آمدئوآووگادور» مدعي شد كه چنانچه حجمهاي مساوي از گازهاي مختلف هميشه از ذرات مساوي ساخته شده باشند او مي‏تواند قانون تركيب امجام را ثابت كند.

 اين ذرات ممكن است اتم‏هاي منفرد و يا تركيبي از اتم‏ها كه مولكول ناميده مي‏شوند، باشند و اين «فرضيه اووگادور» خوانده مي‏شود. با توجه به اينكه دو حجم از هيدروژن با يك حجم اكسيژن تركيب مي‏شود، چنانچه اين نظريه صحت داشته مي‏داشت، پس احتمالا بدان معني است كه به عوض يك اتم از هر كدام كه دالتون معتقد بود، 2 اتم هيدروژن در يك مولكول آب را پذيرفتند ولي تقريبا هيچ كس اعتنايي به فرضيه‏ي اووگادور نكرد. براي حدود 50 سال شيمي دان‏ها نمي‏فهميدند منظور از نسبت‏هاي چندگانه چيست؟

 در سال 1860 اولين كنگره بين المللي شيمي در كارلسورهه آلمان تشكيل شد. صد و چهل شيمي دان از همه‏ي ممالك در آن شركت كردند. يك شيمي دان ايتاليايي به نام «استاينس لائو كانيزارو» كه با فرضيه‏ي اووگادور كاملا آشنايي داشت، نظريات خود را در جزوه‏اي منتشر كرد و در كنگره سخنراني مستدلّي درباره اووگادور ايراد كرد. «ژان سوره استا» شيمي دان بلژيكي كه مشغول تهيه‏ي جدول اوزان اتمي بود فرضيه‏ي اووگادور را اساس كار قرار داد و سرانجام در 1865 موفق شد اولين جدول جديد اين ارقام را در اختيار عموم قرار دهد.

 

 آرايش اتمي‏

 اگر چه مشكل وزن‏هاي اتمي حل شده بود، اما اين تنها مشكل اتم نبود.

 در 1824 دو شيمي دان آلماني، «جوستوس خون ليبيگ» و «فرد ريش وولر» روي دو تركيب متفاوت كار مي‏كردند هريك براي تركيب خود به فرمولي دست يافتند و به تعداد زيادي از اتم‏هاي هريك از آن دو عنصر پي بردند. وقتي نتايج حاصله را اعلام كردند، معلوم شد هر دو تركيب داراي فرمول واحدي هستند و در مقياس مساوي، مولكول هر تركيب داراي فرمول واحدي هستند و در مقياس مساوي، مولكول هر تركيب داراي همان عناصري است كه در تركيب ديگر وجود دارد. با همه‏ي اينها دو تركيب متفاوت با دو طرز عمل مختلف بودند. «بزرليوس» كه پيشكسوت شيمي دان‏هاي عصر خود بود، از اين مساله در شگفت شد و عمل دو شيمي دان را تكرار كرد و متوجه صحت عمل آن دو شد. دو تركيب متفاوت با عناصر يكسان با نسبتهاي يكسان حاصل مي‏شد. برزليوس آنها را «ايزومر» ناميد كه واژه‏اي يوناني به معناي «نسبت‏هاي برابر» است. موارد ديگري از ايزومرها كشف شد كه تقريبا هميشه در مولكول‏هاي حاوي اتم كربن بدست مي‏آمد.

 برزليوس مولكول‏هاي كربن دار نباتات و حيوانات را به دليل اينكه معمولا در موجودات زنده بودند «تركيبات آلي» ناميد.

 دست يابي به فرمول تركيبات آلي دشوارتر بود. در حاليكه اكثر مولكول‏هاي فاقد اتم كربن كوچك بودند ولي پي بردن به ساختمان آنها ميسر بود. اما در مورد اينكه دقيقا چه ميزان از هر نوع اتم وجود داشته، گيج كننده بود و ممكن بود كه همان تركيبات ايزومرهاي متفاوتي داشته باشند.

 دانستن تعداد اتم‏هاي يك مولكول كافي نبود، زيرا ممكن بود انواع يكسان از اتم‏ها به نظر تعداد مساوي آرايش متفاوتي در دو مولكول متفاوت ارائه دهند. اما شيمي دان‏ها چگونه مي‏توانستند به اين آرايش پي ببرند؟ يك شيمي دان انگليسي به نئام «ادوارد فرانكلند» در سال 1852 پيشنهاد كرد كه هر نوع مختلف اتم داراي «ظرفيت» خاص است. يعني قدرت تركيب فقط با تعداد خاصي از اتم‏هاي ديگر را دارد. اين كلمه را از لغت يوناني به معناي «قدرت» گرفته شده است.

 براي مثال هيدروژن داراي ظرفيت 1 است و فقط با يك اتم ديگر مي‏تواند تركيب شود.

 در 1858 يك شيمي دان اسكاتلندي به نام «آرچيباله اسكات كوپر» پيشنهاد كرد كه به اتم آنچنان بنگريم كه گويي پيوند هايي دارد كه به وسيله‏ي آنها خود را به ديگر اتم‏ها متصل مي‏كند. مثلا هيدروژن را به صورت -H مي‏نويسيم و با متصل كردن پيوندها مولكول مي‏سازيم. روش استفاده از پيوندهاي اتمي براي ساختن مولكول در مورد تركيبات آلي كوچك به آساني قابل عمل بود، ولي مساله‏ي پيچيده مولكول‏هاي بزرگ آلي بود كه هنوز نياز به توضيح داشت.

 «ككوله» فرضيه ظرفيت را در مورد تركيبات آلي اجرا كرد و در سال 1858 نشان داد كه با تمركز بر اين واقعيت كه اتم كربن چهار پيوندي است و مساله‏ي تعدادي از مولكول‏ها را حل كرده است. با روشن شدن موضوع اوزان اتمي، صحت راه ككوله نيز روشن شد.

 زماني كه ككوله سيستم خود را اعلام كرد بسياري از مسائل مربوط به تركيبات آلي بسرعت حل شد. با اين حال يك تركيب ساده همچنان حل نشده باقي ماند و آن بنزن با فرمول C0H0 بود. به نظر مي‏رسيد كه براي تركيب 6 اتم كربن و 6 اتم هيدروژن براي ايجاد مولكولي كه مانند بنزن عمل كند، طبق سيستم ككوله هيچ راهي نباشد. بعد از ظهر يك روز در سال 1865 وقتي كه سوار بر يك واگن اسبي بود به خواب سبكي فرو رفت، در حالت نيمه خواب زنجيري از اتمهاي كربن به سرعت از نظرش گذشت ناگهان ته زنجيره خود را به سر ديگر متصل كرد و حلقه‏اي از اتم تشكيل داد.

 بدين ترتيب ككوله جواب سئوال خود را يافت و فرمول گسترده بنزن را ارائه داد. در 1874 يك شيمي دان هلندي به نام «جاكوبرس هنريكوس وانهوف» نشان داد كه چگونه مي‏توان پيوندهاي اتم كربن را نه فقط به صورت ترسيم روي يك كاغذ بلكه در فضاي واقعي قرار داد. بدين ترتيب ساختن نمونه‏هاي سه بعدي مولكول‏ها در حاليكه همه‏ي اتم‏ها در جاي صحيح خود و همه پيوندها در جهت درست قرار داشته باشند ميسّر گرديد.

 

 واقعيت اتم‏

 حدود اواخر سالهاي دهه‏ي 1800 فرضيه‏ي اتمي در تمامي پيكارهايش پيروز شده بود. ساختمان مولكوي‏هاي بيشتر و بيشتري با جزئيات كشف شده و حتي ساختمان بعضي از تركيبات آلي نسبتا پيچيده نيز روشن شد. اما هنوز هيچكس اتم يا مولكول را به چشم نديده بود و اتم تنها وسيله‏اي براي توجيه و تشريح اكتشافات شيمي دانان و مفاهيم آسان و مفيدي بودند. هيچكس نمي‏دانست اتمها و مولكولها واقعا چگونه‏اند، چه اندازه و وزني دارند و بسياري از شيمي دانان اظهار مي‏كردند كه نبايد موضوع اتم را جدي گرفت و فقط در حد يك ايده است. در سال 1827 يك گياه شناس اسكاتلندي به نام «رابرت براون» براي ديدن يك ذره‏ي بسيار كوچك گرده گياهي كه بر روي آب شناور بود از ميكروسكوپ خاصي استفاده كرد. وي مشاهده كرد كه ذرات كوچك گرده در جهات مختلف پراكنده مي‏شدند. البته دانه‏هاي گرده از گياهان بر مي‏خيزند و ذرات كوچكي از حيات در خود دارند. در نتيجه براون به فكر افتاد كه حركت ذرات بدليل زنده بوده آنهاست. براون همين آزمايش را روي ذرات بسيار ريز رنگ كه فاقد حيات بودند، انجام داد. آنها نيز همانطور حركت مي‏كردند. اين حركت را «حركت براوني» مي‏نامند. براي مدتي در حدود 30 سال هيچكس نمي‏دانست چگونه آن را توجه يكند. حدود 1860 يك رياضي دان اسكاتلندي به نام «جيمز كلارك ماكسول» در مورد طرز عمل گازها به مطالعه پرداخت. وي نشان داد كه گازها نه تنها از اتم و مولكول ساخته شده‏اند، بلكه اين اتم‏ها و مولكول‏ها دائما در همه جهات در حركت اند و از اطراف و بالاي يكديگر به سرعت مي‏جهند. هر چه درجه حرارت بالا بود اتم‏ها و مولكول‏ها با سرعت بيشتري حركت مي‏كردند و با شدت بيشتري مي‏جهيدند. ذره كوچك بر حسب جهتي كه تصادمات مولكول‏ها انجام مي‏گيرد تا بي نهايت روي آب به اين طرف و آن طرف خواهد رفت. اين توضيح حركت براوني است.

 در سال 1905 رياضي دان آلماني به نام «آلبرت انيشتين» حركت ذراتي بر طبق «حركت براوني» را مورد مطالعه قرار داد و فرمول رياضي پيچيده‏اي شامل اندازه ذره، اندازه مولكول آب و فاصله‏اي كه ذره در مدت زمان معين طي مي‏كند، ارائه داد. بنابراين اگر كسي مي‏توانست اعداد قسمت‏هاي حباب به استنثناي مولكول آب را بدست آورد مجهول آخر قابل محاسبه است.

 سرانجام در سال 1908 يك دانشمند فرانسوي به نام «ژان بانيست پرن» مسئله را حل كرد. وي ذرات جسمي موسوم به شيره انگم را در ظرف آبي ريخت، نيروي جاذبه زمين ذرات را به ته ظرف كشاند ولي «حركت براوني» همچنان ذرات را به طرف بالا پرتاب مي‏كرد. طبق فرمول همچنان كه يك ذره از پايين به بالا مي‏رفت تعداد ذرات در آب مي‏بايست تا ميزان بخصوصي كم شود. پرن در همه‏ي ارتفاعات مختلف ذرات را شماره كرد و توانست ارقامي براي همه موارد فرمول به غير از مولكول آب تهيه و اندازه‏ي مولكولي آب را حساب كند. معلوم شد كه يك اتم حدود 1/100000000 يك سانتيمتر است.

 وقتي خبر آزمايش پرن پخش شد مابقي شيمي دان‏ها ناگزير تسليم شدند.

 بدين ترتيب دليل روشني در مورد اندازه‏هاي اتمهاي واحد بدست آمد. اگرچه خود اتم‏ها ديده نمي‏شدند ولي نتايج حاصل از تكان‏هاي آرام، فشار دادن و تصادم آنها قابل رويت بود.

 در سال 1936 يك دانشمند آلماني به نام «اووين ويلهلم مولر» ميكروسكوپ الكتروني را اختراع كرد. در اين ميكروسكوپ سر سوزن ظريفي در ظرفي كه همه‏ي هواي آن كشيده شده (خلأ) قرار داده شده بود.

 وقتي به ظرف حرارت داده مي‏شد، ذرات كوچكي از سر سوزن جدا شده و در خطوط مستقيم از آن دور شده و به صفحه‏اي از مواد شيميايي اصابت مي‏كردند و اين صفحه در اثر برخورد ذرات سرخ و گداخته مي‏شد. از گداختگي صفحه مي‏توانستند نوع ساختمان سر سوزن را تعيين كنند.

 مولر اين وسيله را تكميل و در حدود سالهاي 1950 موفق شد از صفحه گداخته عكس بگيرد. اين عكس اتم‏هاي سازنده‏ي نوك سوزن را كه در خطوط منظم رديف شده بودند نشان مي‏داد.

 بالاخره مردم موفق به ديدن اتم شدند. البته ديگر در آن زمان مي‏دانستند كه اتم آنچه كه تصور مي‏كردند، نيست. لوسيپوس و دموكريتوس و دالتون فكر مي‏كردند اتم‏ها غير قابل تجزيه‏اند و خود كلمه‏ي اتم هم به همين نام است. امروزه دانشمندان درباره‏ي اتم چيزهاي زيادي مي‏دانند.

+ نوشته شده در  چهارشنبه بیست و پنجم آذر 1388ساعت 10:5  توسط پریوش  | 

سرمايش مغناطيسي با افزايش مغناطيدگي

شكل جديدي از سرمايش مغناطيسي با مولكولهاي كوچك حلقوي شكل پديد آمد.
يكي از راههاي معمول سرمايش نمونه اي از ذرات اينست كه انرژي اضافه به محيط اطراف داده شود. راه ديگر براي چاييدن (chilling) اتمها كه با استفاده از چگاليدن بوز-انشتين صورت مي پذيرد، اينست كه بگذاريم اتمهاي داغتر از سيستم در بروند. در راه بعدي يعني سرمايش مغناطيسي هم از اسپين اتمها استفاده مي شود. اگر اسپينها را بصورت كامل يك سيستم بي دررو (از لحاظ گرمايي) در نظر بگيريم، با كاهش قدرت ميدانهاي مغناطيسي بكار رفته روي ماده، اسپينها بطور بي دررو ”سرد“ مي شوند. سپس مقداري از جنب و جوش و حرارت حركتهاي اتمي مولكولها به اسپينها منتقل مي شود و اين باعث سردشدن مولكولها مي شود.
اين ”نامغناطيدگي بي دررو adiabatic demagnetization“ بطور معمول در آزمايشگاههاي دماي پايين براي رسيدن به دماهايي حدود ميلي كلوين استفاده مي شود كه اين دما براي مطالعه ي هليوم 3 لازم است. اين قانون براي اسپين هسته ي اتمها هم استفاده مي شود و با اين شيوه مي توان در هسته ها مي توان به حدود دمايي 50 نانوكلوين در مس رسيد.
اينك فيزيكدانان دانشگاه ايرلانگن-نورنبورگ Erlangen-Nurnburg در آلمان براي اولينبار توانستند كاري بكنند كه با افزايش ميدان مغناطيسي بكار رفته روي مواد دماي آن پايين بيايد. اين ”مغناطيدگي بي دررو“ با استفاده از ”چرخهاي آهني ferric wheels“ (مولكولهاي حلقوي شكلي كه شش اتم آهن و كمي ناخالصي بشكل زير در خود دارد صورت پذيرفت.



شكل مولكولهاي چرخ آهني با ساختار NaFe6 يا triethanolamin6. در اين شكل مولكولهاي Fe+3 با رنگ قرمز نمايش داده شده اند، Na+ برنگ نارنجي، O با آبي ، N با سبز، C با زرد و اتمهاي H از قلم افتاده اند. عهده دار خاصيت مغناطيسي مولكول در واقع يونهاي Fe هستند.
منبع عكس: http://www.aip.org/mgr/png/2002/170.htm



پژوهشي اينچنين كه در آن برهمكنش بين اسپين و مولكول و همدوسي بين حالتها در طول زمان وجود دارد مي تواند براي علم كامپيوترهاي كوانتومي مفيد باشد.
+ نوشته شده در  پنجشنبه پنجم آذر 1388ساعت 16:16  توسط پریوش  | 

 

هنوز راز هایی در مورد آب، این ترکیب ساده ای که ما آن را H2O میشناسیم، وجود دارند.

با بکار گیری رایانه های فوق سریع و استفاده از قوانین فیزیک، دانشمندان دانشگاه های دلویر (Delaware) و رادبود (Radboud) کشور هلند، روش جدیدی را برای آشکار ساختن خواص مخفی آب بوجود آوردند.

شبیه سازی آنها از مولکول های آب، که فقط بر پایه قوانین فیزیک کوانتومی است و از هیچ داده ی آزمایشگاهی بهره نجسته است، خواهد توانست به علم و صنعت در گستره وسیعی از کاربردها کمک نماید، از تحقیقات بیولوژیکی مربوط به پروتئین و دیگر فرایندهای زیستی گرفته تا طراحی نسل بعدی نیروگاه های تولید انرژی.

این پژوهش در مقاله ای تحت عنوان "Predictions of the Properties of Water from First Principles" در شماره 2 ماه مارس مجله ساینس (Science) گزارش داده شده است.

همه میدانیم که یک مولکول آب به صورت H2O نشان داده میشود (دو مولکول هیدروژن که به یک مولکول اکسیژن پیوند خورده اند). به نظر ساده است. اما مایع آب خیلی پیچیده تر از آن است.

آب به صورت یک مایع ابدا ساده نیست و چندین خاصیت مختلف دارد که در هیچ مایع دیگری یافت نمیشود. برای مثال، یک پدیده غیر متعارف آب اینست که چگالی آن در دمای 4 درجه سانتیگراد بیشترین مقدار را دارد. به همین دلیل است که یک تکه یخ بر روی آب شناور میماند، این در حالی میباشد که حالت جامد ترکیبات دیگر به درون مایع آن ها فرومیرود.

در میان خواص بسیار زیاد آن، آب میتواند مقادیر زیادی حرارت را قبل از اینکه داغ شود به خود جذب کند، و همچنین حرارت را به کندی در حین سرد شدن از دست میدهد. از طرف دیگر، بدون در نظر گرفتن فصل، آبگیر ها در طول روز میتوانند بجوشند و در شب یخ بزنند.

ویژگی های منحصر به فرد آب مستقیما به ساختار مولکولی آن و توانایی مولکول های آب برای تشکیل پیوند های هیدروژنی با دیگر مولکول های آب مربوط میشوند.

مدت زیادی بود که پژوهش گران فکر میکردند که هر مولکول آب در حالت مایع به طور متوسط با چهار مولکول دیگر توسط پیوند هیدروژنی مرتبط شده است. تا اینکه در سال 2004 در مقاله ای اظهار شد که این ارتباط تنها با دو مولکول دیگر وجود دارد. آن اظهار آزمایشگاهی به طور کامل کنار گذاشته نشد زیراکه مدل های تئوری موجود آب مایع به دسته خاصی از آزمایش ها مربوط میگشتند.

با وجود این، ابهامات در مورد ساختار آب مایع میتواند برطرف شود اگر که توسط قوانین فیزیک به طور مستقیم پیش گویی شود.

با استفاده از فیزیک کوانتومی که بکار گیری قوانین فیزیک در مقیاس میکروسکوپی است، دانشمندان توانستند یک چهارچوب تئوریکی جدید را برای توصیف رفتار هر اتم مولکول آب تولید کنند.

این امکان از آنجا بوجود آمد که رایانه های فوق سریع چند پردازشگره برای حل دقیق معادلات کوانتوم مکانیکی توصیف کننده نیروهایی که هر مولکول آب بر یکدیگر وارد میکنند بکار گرفته شد. با دانستن این نیرو ها، میتوان حرکت گروهی مولکول های آب را فهمید و تمام خواص آب مایع را پیش گویی کرد.

به سرانجام رسیدن مطالعات چندین ماه به طول انجامید. نتیجه آن یک مدل جدید است. اولین مدلی که میتواند به طور دقیق هم خواص یک جفت مولکول آب و هم خواص آب به صورت مایع را پیش گویی کند.

در بین کاربرد های متعدد آن، پژوهش گران میتوانند به دانشمندان در خصوص درک بهتر آب کمک کنند. این کمک نه تنها در مورد آب به صورت مایع است بلکه در حالت های دیگری مانند شکل های بلوری یخ و همچنین آب در شرایط بحرانی مانند آب فوق العاده واکنش دهنده اَبُربحران " highly reactive supercritical water" که برای حذف آلودگی های گنداب ها wastewater و بازیابی پلاستیک در چرخه های شیمیایی کاربرد دارد

+ نوشته شده در  پنجشنبه پنجم آذر 1388ساعت 16:12  توسط پریوش  | 

 
+ نوشته شده در  پنجشنبه پنجم آذر 1388ساعت 9:28  توسط پریوش  | 

دید کلی

می‌توان هسته اتم را به عنوان جرم نقطه‌ای و بار آن را به صورت بار نقطه‌ای در نظر گرفت. هسته شامل ، تمامی بارمثبت و تقریباً تمامی جرم اتم است، در نتیجه مرکزی تشکیل می‌‌دهد که حرکت الکترونی حول آن رخ می‌‌دهد. هر چند هسته عمدتاً از طریق نیروی جاذبه کلنی خود با الکترونها ساختار اتمی را تحت تأثیر قرار می‌‌دهد اما بعضی آثار نسبتاً دقیق را در طیف‌های اتمی می‌‌توان به آن نسبت داد.



تصویر

اجزای اصلی هسته

ذراتی که تمامی هسته‌ها از آنها ترکیب یافته‌اند پروتونها و نوترونها هستند. در حالت کلی به این ذرات نوکلئون می‌‌گویند. خواص نوکلئونها

بار

پروتون هسته اتم H (ایزوتوپ سبک اتم هیدروژن) است. پروتون دارای یک بارمثبت است که از نظر بزرگی با بار الکترون برابر است. نوترون دارای بار e 10-13 (10-18 برابر بار الکترون است) ولی چون خیلی کوچک است آن را خنثی می‌‌گیریم و لذا در برهمکنشی با الکترون نیروی ضعیفی از خود نشان می‌‌دهد.

جرم

پروتون و نوترون دارای جرم تقریباً یکسان هستند، جرم نوترون از جرم پروتون اندکی (کوچکتراز 0.1 درصد) بیشتراست. این ذرات هر دو دارای انرژی سکون حدود یک گیگا الکترون ولت هستند.



img/daneshnameh_up/7/79/C3_quant_04.JPG

اسپین

یک ویژگی مهم پروتون و نوترون اندازه حرکت زاویه‌ای ذاتی ، یا به اصطلاح اسپین هسته‌ای آنها است. اعداد کوانتومی اسپین هسته‌ای پروتون و نوترون هردو برابر ½ هستند.

گشتاور مغناطیسی هسته‌ای

گشتاور مغناطیسی پروتون در همان راستای اسپین هسته‌ای آن است، بزرگی گشتاور هسته‌ای ، مؤلفه گشتاور مغناطیسی پروتون را در امتداد راستای کوانتش فضایی برحسب مگنتون هسته‌ای به دست می‌‌دهد. گشتاور مغناطیسی نوترون درخلاف راستای اندازه حرکت زاویه‌ای آن است. گشتاور مغناطیسی غیر صفر نوترون حاکی از آن است که ، با وجود صفر بودن بار کل ، یک توزیع غیر یکنواخت بار در داخل آن وجود دارد.

نیروهای هسته‌ای

از آنجا که پروتونها در داخل هسته در فاصله کمی از همدیگر قرار دارند، نیروی رانشی کولنی بین آنها خیلی بزرگ است. برای آنکه هسته در حالت تعادل قرار گیرد، این نیرو را باید یک نیروی ربایشی دیگر (نیروی هسته‌ای) خنثی کند. این نیرو در قوی‌ترین حالت خود ، از نیروی کولنی خیلی قوی‌تر است. ولی ، نیروی هسته‌ای فقط در گستره محدودی قوی است. از جنبه‌های مهم نیروی هسته‌ای ، استقلال آن از بار است. نیروی مؤثر بین دو نوکلئون ، از اینکه دو پروتون ، دو نوترون و یا یک پروتون و یک نوترون باشند، متشکل است. نیروی بین دو نوکلئون با اسپین موازی نسبت به نیروی بین دو نوکلئون با اسپین پادموازی قویتر است.



img/daneshnameh_up/a/ac/atom.jpg

پتانسیل یوکاوا

بر خلاف نیروی کولنی ، که بستگی به فاصله آن به صورت ساده r2/1 است، نیروی هسته‌ای بطور خیلی پیچیده‌ای به فاصله وابسته است. پتانسیل حاصل از این نیرو را پتانسیل یوکاوا گویند. پتانسیل تابع نمایی از فاصله هسته‌ای است. به علت این رفتار نمایی ، پتانسیل و نیرو سریعا با افزایش فاصله به صفر میل می‌‌کند.

شعاع هسته‌ای

شعاع هسته‌ای بطور تقریبی از نتایج آزمایشهای پراکندگی ذره آلفا محاسبه می‌‌شود. اگر چه توزیع این ذرات پراکنده تنها با برهمکنش کولنی برای فواصل بزرگتر از 14-10 متر توجیه می‌‌شود، اما وقتی ذرات آلفا تقریباً در این فاصله از مرکز هسته قرار می‌‌گیرند از قانون کولن تبعیت نمی‌‌کنند. در این حالت ، شعاع هسته‌ای را می‌‌توان به صورت آن فاصله‌ای از مرکز هسته تعریف کرد که در آن نیروی هسته‌ای از اهمیت برخوردار است. نتایج به دست آمده از پراکندگی نوترونی برای شعاع هسته بیانگر تابعیت شعاع هسته‌ای از عدد جرمی‌‌ هسته‌ای (A) است. که شعاع هسته با ریشه سوم عدد جرمی متناسب است.

 

+ نوشته شده در  پنجشنبه پنجم آذر 1388ساعت 9:5  توسط پریوش  |